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Abstract
Infant cry is one of the first distinctive and informative life signals
observed after birth. Neonatologists and automatic assistive systems
can analyse infant cry to early-detect pathologies. These analyses exten-
sively use reference expert-curated databases containing annotated
infant-cry audio samples. However, these databases are not publicly
accessible because of their sensitive data. Moreover, the recorded
data can under-represent specific phenomena or the operational con-
ditions required by other medical teams. Additionally, building these
databases requires significant investments that few hospitals can afford.
This paper describes an open-source workflow for infant-cry detection,
which identifies audio segments containing high-quality infant-cry sam-
ples with no other overlapping audio events (e.g., machine noise or adult
speech). It requires minimal training because it trains an LSTM-with-
self-attention model on infant-cry samples automatically detected from
the recorded audio through cluster analysis and HMM classification. The
audio signal processing uses energy and intonation acoustic features from
100 ms segments to improve spectral robustness to noise. The workflow
annotates the input audio with intervals containing infant-cry samples
suited for populating a database for neonatological and early diagnosis
studies. On 16 minutes of hospital phone-audio recordings, it reached
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sufficient infant-cry detection accuracy in 3 neonatal care environments
(nursery-69%, sub-intensive-82%, intensive-77%) involving 20 infants sub-
ject to heterogeneous cry stimuli, and had substantial agreement with
an expert’s annotation. Our workflow is a cost-effective solution, partic-
ularly suited for a sub-intensive care environment, scalable to monitor
from one to many infants. It allows a hospital to build and populate
an extensive high-quality infant-cry database with minimal investment.

Keywords: Artificial Intelligence, Neonatology, Infant Cry Detection, Audio
Processing, Machine Learning, Early Diagnosis

1 Introduction
Despite the advances in health technology and early diagnosis techniques, infant
mortality is still high, with ∼2.4 million babies dying within the first month of
life every year [1]. Newborns (infants with less than 28 days) represent ∼47%
of the total deaths of children under five years. However, most newborn deaths
could be early diagnosed and avoided if proper techniques were implemented [2].
Infant cry is among the most promising newborns’ communication signals to
study for early diagnosis. It is the first distinctive and informative life signal in
born-at-term and often in preterm infants [3–7]. From a pediatric perspective,
infant cry is the reflection of complex neurophysiological functions that can
allow assessing a newborn’s psychological and clinical status [8]. The functional
multiplicity of cry has been studied in several scientific disciplines. Through
cry, infants express emotional needs, physical pain, discomfort, and needs to
caregivers [9]. Moreover, cry induces an internal stress signal in caregivers
that triggers instinctive responses [10, 11]. From a psychological perspective,
infant cry - as a social interaction modality - contains the core of emotional
growth and long-term social skill development [8, 9]. Specific audio-signal
spectral characteristics of infant cry are associated with emotional states, health
status, gender, and gestational development conditions [12, 13]. The existence
of pathology-related spectral characteristics is also largely documented [14–
21]. In the last decades, several studies have adopted Artificial Intelligence
methodologies to analyse infant cry and assist medical experts in the early
diagnosis of neonatal pathological status. These studies have targeted several
critical pathologies, such as deafness [22], asphyxia [23, 24], hypothyroidism
[25–27], cleft palate [28, 29], brain damage [30, 31], autism [32–35], cri-du chat
[36], respiratory distress syndrome [37], and other pathologies [38–41].

Most automatic approaches use databases that contain expert-curated audio
annotations of infant cry recordings, which include spontaneous and induced
cry [42]. The database annotations concern the type of cry, the infant identity,
and the recording conditions (e.g., the microphone used, the noise level, and the
people present) for each infant monitored. The automatic approaches commonly
process acoustic features extracted from these databases and might also use
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para-linguistic information and emotional cues [43–45]. The most common
approaches use a four-step workflow [42]. First, the audio is normalised, silence
and low frequencies are eliminated, and only high-energy parts are retained.
Second, acoustic features are extracted from ∼10 ms audio segments that
address the phonetic structure of the cry signal. Third, the features are post-
processed to maximise information representation and reduce feature vector
dimensionality. Fourth, a pattern recognition model is used to detect infant
cry or detect pre-defined pathologies.

An infant-cry database can act as a knowledge base supporting neona-
tologists for studying, diagnosing, and annotating infant clinical status. A
database-monitored infant has historical data recorded continuously, which a
neonatologist can consult and compare in the case of a pathology onset evi-
dence [46]. The medic can also add annotations in the database for future
comparisons and share them with colleagues.

Recently, infant-cry databases have been crucial for expert studies that
discovered unexpected features. For example, some studies have highlighted
that infant-cry prosody (the modulations of cry pitch) depends on the mother’s
native language [47]. Other studies have demonstrated that prosodic acoustic
stimuli are memorised during the third trimester of pregnancy and can be
detected in a newborn’s cry-signal spectrum [48, 49]. Moreover, newborns’
prosodic-pattern learning greatly increases in the first months of life and adapts
to the family’s native-language prosody [50].

These observations demonstrate the importance of infant-cry databases for
automatic and expert analyses and the role of prosody in infant cry decoding.
However, because of the sensitive data they contain, infant-cry databases are
publicly unavailable. Therefore, hospitals that need experimental data, practi-
cally turn to building their own databases through long-term data collection
and annotation plans, which soon or later discourage most investments. More-
over, building an infant-cry database includes intrinsic difficulties that reduce
the suitability of the experimental conditions for early-diagnosis experiments.
For example, spontaneous cry is less frequent than induced cry and is usually
under-represented [42]. Moreover, samples tend to include 1-2 month infants,
who have better physiological and anatomical structures for cry production
and vocalisation control than newborns [51].

This paper describes an open-source infant cry detection workflow that
identifies prominent infant cry from audio recordings in real-life noisy neonatal
care environments. A prominent infant-cry sample is an audio segment including
one infant’s cry sample with clear energy and intonation conditions and no
other acoustic event overlapped. Our workflow is an easy and cost-effective
solution to building an infant-cry database for early diagnosis by medics and
automatic systems. Differently from other systems [52–54], it adapts to the
particular noise, infants, medical operators’ speech, and other sound sources
present in the recording environment. The software is entirely open source. It
can work with the audio recorded by cellular phones and thus does not require
additional costs to the hospital and the medical operators. The workflow is a
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machine-learning-based system, mostly unsupervised, which requires a minimal
annotated training set (21 s) and self-trains on the analysed audio recording.
It uses acoustic features extracted from ∼100 ms segments - a much larger
window than the phonetic-scale window used by other approaches [22, 24, 52–
55] - whose spectral structure is more robust to noise. The workflow embeds
three machine learning models: an unsupervised model (cluster analysis), a
minimally-supervised model (a Hidden Markov Model), and a self-training
model (a Long Short Term Memory model with a self-attention layer). Its
output is an annotation file accompanying the audio recording, indicating the
intervals that contain the detected prominent infant cry.

The novelty of our workflow is that it is directly re-usable with new data
and by other hospitals because it adapts itself to new recording conditions
through self-training. Performance optimisation can be achieved using recording
equipment that filters out complex interference sources like machine beep-
ing sounds and human speech (Section 4). Our approach is innovative and
cost-effective, considering the difficulty of accessing infant-cry databases and
representing the large variability of infant speech through huge and expensive
annotated databases. We demonstrate that our workflow performance is com-
parable with that of a reference supervised infant-cry detection system [52],
which would require re-calibration in new operational conditions. Moreover,
we use syllabic-scale acoustic features, which are more robust to noise [56–58]
than the phonetic-scale features used by other approaches [52–54]. Finally, the
fact that our software is completely open-source is uncommon in this context
but highly valuable for hospitals.

In summary, our workflow aims to produce clear infant-cry samples to
help early diagnosis. These samples are the indispensable basis for analyses by
medical experts and automatic systems to discover new correlations between
infant pathologies and cry, thus transforming observed illness signs into clearly
reported symptoms.

2 Methods
Our infant cry detection workflow was entirely developed in Java to improve
its potential embedding in small devices [59]. It is also entirely open source
(“Code availability” statement). The workflow is constituted by a sequence of 5
computational modules (Figure 1):

• The “signal segmentation” module, which divides the signal into smaller units
with acoustic characteristics that indicate the potential presence of infant
cry (Section 2.2);

• The “energy and pitch extraction” module, which estimates energy and into-
nation features to robustly represent infant-cry related audio characteristics
in noisy operational conditions (Section 2.3);

• The “cluster analysis” module, which optimally clusters features to potentially
distinguish between infant cry and other audio types (Section 2.4);
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• The “infant cry cluster identification” module, which identifies the clusters
that probably contain infant cry (Section 2.5);

• The “infant cry detector” modules, which first train a complex machine
learning model on the cry and non-cry cluster samples and then annotate the
original audio file. A final module (“consecutive segment merging”) merges
consecutive audio segments containing infant cry (Section 2.6).

The workflow aims to detect audio segments containing prominent infant
cry, i.e., audio intervals containing the clear cry of one infant at a time,
without machine noise, medical operators’ speech, and other audio events.
These segments constitute valuable samples of infant cries to store for later
analyses and studies.

2.1 Study cases
Nine study cases were selected from the audio recordings collected by the “Centro
di Simulazione e Formazione Neonatale” (Centro NINA) in three neonatal care
environments (Table 1): 3 recordings were conducted in nursery care (where
healthy newborns are held); 4 in sub-intensive care (where pre-term newborns
and infants coming from intensive care are monitored); and 2 in intensive
care (where newborns with severe clinical states are monitored; normally
abbreviated as ICU). These are the principal environments where infants are
monitored by the neonatal care staff of the “Dipartimento Materno Infantile”
of the Azienda Ospedaliero-Universitaria Pisana (Pisa, Italy). Neonatologists
voluntarily conducted audio recording sessions under complete anonymity and
lowest invasiveness constraints. The audio was recorded through cellular phone
microphones at a 44,100 Hz sampling frequency by placing the phone in the
middle of the room. The voices of the medical staff captured by the microphone
were entirely anonymous, with no pseudo-labelling included. The identity of
the infants present in the room was unknown too. Cellular phone usage was
already allowed in neonatal environments and thus did not violate the hospital’s
policies. The medical staff annotated each audio recording by indicating the
neonatal care environment and the most frequent cry stimuli (e.g., examination,
hunger, physical needs, spontaneous). The study cases’ recording conditions,
infant cry types, and the number of different infants and operators recorded
are summarised in Table 1 and Figure 2.

The average signal-to-noise ratio (SNR) was generally low across the envi-
ronments (i.e., the noise level was high). It ranged between 9.44 and 16.86
in nursery care, 3.13 and 20.01 in sub-intensive care, and 4.40 and 5.05 in
intensive care. The self-voluntary nature of the experiment limited the number
of recordings. Nevertheless, 16 minutes of audio was collected, containing 3.3
minutes of prominent infant-cry samples from ∼20 infants. This material was
suitable for conducting an inspectional experiment like the one presented in
this paper, which indeed has a higher or comparable length to the test sets used
by other infant-cry detection studies [52, 54]. Additional recordings were taken
by placing the microphone close to crying infants to collect a specific corpus of
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infant-cry samples with low surrounding noise. Given the constant and dynamic
noise present in the environments, this operation was complex and resulted in
collecting 21 s of cry samples from 8 infants. We used these 21 s audio samples
of prominent infant cry as the minimal training set of our workflow.

A qualitative environmental stress level classification was associated to the
study cases (Table 1 and Figure 2): We classified a crowded environment with
several people talking loudly, a high noise level, and multiple infants crying
as a high stress-level condition. Conversely, we classified an environment with
few people talking and an averagely low-volume noise as a medium stress-
level condition. The collected recordings did not include quiet conditions with
low noise and few people talking (low stress-level condition). The recording
conditions were sufficient to test our system in a real-life context where the
stress level is averagely high or medium.

All recordings were manually annotated by an expert speech annotator to
mark the segments containing prominent infant-cry samples. These annotations
(3.3 minutes in total) represented gold-reference samples suited for populating
an infant-cry database for automatic and medical analyses and diagnoses.
Therefore, we measured how much our infant cry detector was able to capture
these segments (Section 3.3).

The study cases had overall the advantage of forcing the workflow to achieve
good performance in the critical, noisy, and real-life operating scenarios of
neonatal care, with minimal burden on the medical staff.

2.2 Signal Segmentation
Our workflow input is an audio signal recorded by a cellular phone’s microphone
at 44,100 Hz. The high noise level of our study case recordings prevented
using Automatic Speech Recognition (ASR) software to detect and remove
human speech from the audio, because the phonetic structure of the speech was
compromised in such conditions [58]. Therefore, to simplify audio processing
and remove pure-noise audio segments, the first workflow module (“signal
segmentation”) divides the complete audio signal into smaller portions of
coherent intonation that may include cry (Figure 1). These smaller segments
allow the workflow to focus the analysis on audio “islands” with stable spectral
characteristics [60]. We identified these segments as tone units, i.e., audio-signal
portions with a high and continuous energy level. Energy is here intended as
the squared sum of the samples of an audio-signal segment divided by the
number of signal-samples (signal-segment power). Tone units have been used
in spoken dialogue processing and to improve ASR performance because they
mostly contain complete sentences [61, 62]. Our signal segmentation module
uses a fast algorithm for tone unit detection [61], which requires setting a tone
unit window length (in ms) parameter to calculate segment energy and find
tone unit boundaries:
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Algorithm 1 Signal Segmentation

Calculate the energy (e) of sequential signal segments with tone unit window
length over the entire signal
For each ei in the energy sequence:

Calculate the 1st-order sample derivative di = ei − ei−1

If di < 0 and ei < tone unit energy threshold → mark the window start
time as a tone unit end.

The algorithm identifies a tone unit as the end of a sequence of high-
energy signal segments. The tone unit energy threshold is an adaptive and
iterative value initially set to a minimal value (0.001 dB), which doubles until
at least three units are found. The tone unit window length parameter requires
optimisation to maximise the workflow performance (Section 3.2). It should be
set to discard noise-only segments and include segments that also contain infant
cry. In our data, prominent infant cry was always included in high-energy tone
units. As the output, the process divides the initial audio recording into shorter
recordings. Tone units with lengths under 1s are discarded as containing either
noise or sound bursts [62].

2.3 Energy and Pitch Extraction
Tone unit segmentation removes short islands of noise, low-energy signal seg-
ments, and sound bursts. The segments left can contain continuous adult speech
and infant cry, overlapped with machine noise within a constant or increasing
energy profile [61, 62]. As the next step, our workflow analyses each tone unit
independently of the other. With our SNR levels, the phonetic-scale (10-20
ms) structure of the audio is corrupted, i.e., the short-windowed spectrogram
contains too much noise to distinguish between speech, noise, and infant cry
automatically [63]. Therefore, the analysis would be better conducted at a
syllabic scale (100-250 ms), where the spectrum is more robust to high noise
levels and the study of energy modulations is more reliable [62, 64, 65].

Our “energy and pitch extraction” module extracts syllabic-scale acoustic
features of energy and prosody, which are particularly suited for infant cry
identification [5, 66–68]. Syllabic-scale energy is the power of a 100-250 ms
signal segment. Syllabic-scale pitch is the frequency of a tone associable with
a syllable, and its time series represents the musicality and intonation of the
signal. Our module calculates pitch through the Boersma’s sound-to-pitch
algorithm [69] - which uses signal autocorrelation - setting a cut-off frequency
band between 50 and 500 Hz. It requires estimating the optimal energy and
pitch window length to maximise the workflow performance (Section 3.2). This
analysis window is passed over the signal to produce aligned energy and pitch
time series for each tone unit. These time series constitute the basis of all further
analyses in the workflow. Undefined pitch values from non-auto-correlated
signal segments is set to 0 to perfectly align the energy and pitch time series.
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In summary, the “energy and pitch extraction” module implements the
following algorithm:

Algorithm 2 Energy and Pitch Extraction

For each tone unit:

Calculate the energy of consecutive signal segments with energy and pitch
window length
Calculate the pitch of consecutive signal segments with energy and pitch
window length. If pitch is undefined report 0

Store the tone unit energy and pitch sequences.

As a result, the algorithm associates each tone unit with two aligned time
series of energy and pitch. Therefore, it defines a sequence of two-feature vectors
over the signal, whose modulations can be analysed to detect infant cry.

2.4 Cluster Analysis
A first selection of the potential vectors referring to infant cry can be made
by applying cluster analysis to groups of energy-pitch feature vectors. Indeed,
an infant-cry signal segment corresponds to a group of energy-pitch feature
vectors. Our “cluster analysis” module passes an analysis window over the signal
while shifting it by some milliseconds (analysis-window length and analysis-
window shift parameters). These parameters were optimised through cross
validation (Section 3.2). The feature vectors falling within an analysis window
are concatenated and then clustered. The module uses the K-means clustering
algorithm [70]. This unsupervised model assigns the elements of a vector space
to a fixed number of clusters without prior knowledge of the vector distribution.
K-means uses an iterative process that optimally assigns the vectors to K
clusters organised around K centroids. It assigns a vector to the nearest cluster
based on its Euclidean distance from the centroid. In our workflow, K is an
unknown parameter that is optimised for each tone unit. For each tone unit
separately, our module iteratively uses K-means with different K values to
find the optimal K value. Each clustering is evaluated through the Bayesian
Information Criterion (BIC) under identical spherical Gaussian assumption.
The highest BIC value corresponds to the optimal K value [71].

2.4.1 BIC selection criterion

The BIC selection criterion assumes that the optimal model among a set of
candidate models (each corresponding to a different K value) is the one with
the highest data likelihood, minus a penalty that increases with the number of
parameters and data involved (to discourage overfitting). Mathematically, BIC
is defined as
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BIC(MK) = ML(D|MK)− NParMK

2
·NData (1)

Where MK is the model using K clusters; ML(D|MK) is the maximum
likelihood of the model; NParMK

is the number of parameters involved in the
model (i.e., the number of clusters plus the number of features of all cluster
centroids); and NData is the number of data clustered. The spherical Gaussian
assumption is used to calculate the maximum likelihood by hypothesising
that the data distributions around the centroids resemble independent normal
distributions [71].

2.4.2 Clustering algorithm

The minimum number of clusters to test (minimum clusters) is an unknown
workflow parameter to be optimised (Section 3.2). It represents the minimum
number of different energy-pitch combinations that should be distinguishable
within a tone unit. If infant-cry segments were included in the tone unit, they
would naturally fall in the same cluster as infant-cry-like signals (e.g., machine
beeping sounds). Adult speech and white noise would instead fall in other
clusters. The cluster analysis process can be summarised as follows:

Algorithm 3 Cluster Analysis with Multi K-means

For each tone unit signal:

Set a signal window with analysis-window length at the tone unit begin
While the window falls withing the tone unit boundaries:

Concatenate the energy and pitch features falling in the window
Shift the analysis window of analysis-window shift milliseconds and
define a new window

For K between minimum clusters and total number of analysis windows:

Execute K-Means on the concatenated features
Calculate the Bayesian Information Criterion (BIC) under identical
spherical Gaussian assumption

Select the optimal K∗ as the K value corresponding to the highest BIC.

The result of this algorithm is the labelling of signal segments with
anonymous cluster indexes.

As an alternative to Multi K-means, we tested X-Means (an optimised
Multi K-means algorithm) [72] and DBScan (a density-based algorithm) [73],
but they achieved a lower performance in our workflow.
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2.5 Infant Cry Cluster Identification
Our cluster analysis module uses feature vector concatenations within analysis
windows. However, these vectors are small time series of energy-pitch vectors
whose modulations can characterise infant cry. A model able to detect the
modulations associated with infant cry could identify which cluster likely
contains infant-cry samples and thus produce a training set out of this. This
statistical task would not necessarily require a model trained on a large corpus.

2.5.1 Hidden Markov Models

Hidden Markov Models (HMMs) are the most common choice for acoustic
modelling based on a few training samples [58, 74]. An HMM is made up of
sequentially connected states H = {h1, .., hg} (Figure 1-middle frame). Given
a sequence of acoustic feature vectors X, an HMM estimates the conditional
probability distribution p(X|S) of X given a sequence (S) of state occurrences
S = s1, s2, .., sT , with each si belonging to H. A decoding algorithm [75]
estimates p(X|S∗), with S∗ being the sequence of states that maximises p(X|S).
The HMM learns p(X|S∗) based on the X vectors samples associated with the
modelled phenomenon. For example, an HMM modelling a specific syllable is
trained only on feature vectors of that syllable. In HMM-based syllable classifiers,
one HMM is trained for each syllable [58]. When an unknown syllables’ vectors
are input to all HMMs, the one modelling that syllable will output the highest
p(X|S∗) value. If only one HMM is available, its output will likely be high when
X corresponds to the modelled phenomenon. Unlike cluster analysis, HMMs
explicitly model the temporal relations and evolution of the feature vectors.

2.5.2 Infant cry cluster identification algorithm

An HMM trained on infant-cry samples will more frequently return a higher
score on infant-cry features than on white noise or adult speech features.
Therefore it can be used to statistically assess which cluster likely contains
infant cry. Our “infant cry cluster identification” module uses an HMM trained
on 21 s of prominent infant cry (Section 2.1). As a pre-processing step, it
transforms the concatenated acoustic features of the previous module into time
series. It then applies the HMM to the time series of each cluster of a tone
unit. The scores that overcome an HMM high-likelihood threshold, are averaged
to approximate a cluster likelihood. If the cluster with the highest likelihood
also overcomes a minimum-likelihood threshold, its time series are marked as
potential infant cry. These thresholds were optimised through cross validation
(Section 3.2). The other clusters’ time series are instead marked as probable
non infant cry. If the minimum-likelihood threshold is never overcome, the tone
unit under analysis is marked as not containing infant cry and discarded from
further processing. Such type of tone unit would not show a clear separation
between infant-cry and non-infant-cry clusters and could confound the next
workflow modules. Conducting the analysis by tone unit thus reduces the
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entropy of the cluster identification operation by specialising and simplifying
the task and enhancing the identification reliability [58, 76, 77].

The infant cry cluster identification process can be summarised as follows:

Algorithm 4 Infant Cry Cluster Identification

Load a Hidden Markov Model (HMM) pre-trained on prominent infant-cry
time series
For each tone unit:

For each cluster c:

For each feature vector V in c:

Represent the feature vector V as a time series X
Calculate the HMM likelihood score L to X
If L > high-likelihood threshold , record L

Calculate the average likelihood L̄(c) of c based on the recorded L
scores

Select the optimal candidate cluster c∗ = argmax(L̄(c))
If max(L̄(c)) > minimum-likelihood threshold , classify the high-likelihood
time series of c∗ as potential infant cry and the time series in the other
clusters as probable non infant cry
If max(L̄(c)) ≤ minimum-likelihood threshold discard the tone unit.

The output of this algorithm is a set of time series across several tone units,
each with analysis-window length, marked as either potential infant cry or
probable non infant cry.

2.6 Infant Cry Detector
In automatic speech recognition, speaker-dependent systems generally achieve
a higher performance than speaker-independent systems [57, 74]. Training an
ASR on the specific acoustic characteristics of one speaker and the surrounding
noise improves recognition accuracy. Similarly, our “infant cry detector training”
module adapts a new model to the potential infant cry and probable non infant
samples marked in the tone units by the previous module. Although this training
set incompletely represents all infant-cry spectral characteristics, it corresponds
to the reality of the recording conditions and is suited for operating within
these conditions. Our module trains a Long Short Term Memory model (LSTM)
using the potential infant cry time series, from all tone units, as positive cases
(target output = 1), and the probable non infant cry time series as negative
cases (target output = 0).
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2.6.1 Long Short Term Memory model with self-attention layer

LSTMs are suited to build classifiers for observation vector time series [78].
They consist of one computational unit (Figure 1-lowest frame) that iteratively
processes all vectors of an input time series. The computational unit comprises
three gates that process one vector at a time together with information extracted
from the previous vectors. All gates are one-layer artificial neural networks with
the same number of output neurons (hidden layer length) and tanh or sigmoid
activation functions. The unit receives an input vector (cell state, ct) from the
previous computational step, which stores a long-term memory representation
of the data. This vector is first updated through the forget gate, which selects
the elements to retain. The selected elements are updated by processing the
unit’s current input vector xt through a sigmoid-activated neural network
(input gate) and a tanh-activated neural network. The two network outputs are
multiplied and then added to the filtered cell state to produce a new cell state.
This updated cell state is passed to the next LSTM processing step. The output
cell state is also re-used internally to the LSTM unit after tanh value scaling
to [-1,1]. This scaled vector is multiplied with the output of another sigmoid-
activated neural network (output gate) whose input is the unit’s input vector
xt. This operation combines the previous long-term information summarised
by the cell state with the short-term information learned by the output gate
to produce the unit’s output vector ht. The last output vector hT represents
the final LSTM output. To produce a final 0/1 classification function, with 1
indicating infant cry and 0 non infant cry, we added two fully-connected layers
to the LSTM. The first layer (“classification” layer) consists of a neural network
with two output neurons that produce [1,0] for infant-cry time series and [0,1]
for non-infant-cry time series. The second layer (“decision” layer) returns 0 or
1 depending on the highest score between the two classification neurons. It
classifies the input time series as infant cry if the first neuron’s score is higher
than the second neuron’s score.

To further enhance the LSTM performance, we added a self-attention layer
[79] between the LSTM and the classification layers. Self-attention combines
all input-sequence elements (i.e., the LSTM outputs, in our case) to deter-
mine which one has the highest importance (attention weight) to enhance the
classification performance. Self-attention was introduced in deep learning to
mimic cognitive attention because it relates one vector with all the previous
and subsequent vectors. Therefore, it processes the LSTM output vectors for-
ward and backwards in time while giving all vectors appropriate weights at
each processing step. A self-attention layer produces a new time series, where
each vector is a position-wise weighted combination of the other vectors. The
weights simulate the “attention” that the surrounding vectors should be given
when processing one vector. During the training process, the self-attention
layer optimises three matrices, named query, keys, and values, that are used
to produce the attention weights [79–81]. We used a self-attention layer to
improve the detection of infant-cry segment boundaries. Detecting the onset
of a cry signal indeed requires looking ahead in the time series to see if more
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energetic and better-classifiable segments are present. Similarly, the terminal
part of a cry segment requires information from the previous segments for bet-
ter classification. Hereafter, we will refer to our combined LSTM/self-attention
model as LSTM+A.

2.6.2 Infant cry detection algorithm

After the training session, the LSTM+A model is used to classify a signal
segment as containing infant cry or non infant cry (“infant cry detector anno-
tation” module). As the final post-processing step, another module joins the
adjacent or overlapping infant-cry segments to produce continuous annotations
(“consecutive segment merging” module). This module saves the annotations
to a LAB-formatted file [82], which contains textual lines with start and end
seconds and an associated comment, e.g., “12.5 15.9 Infant Cry”. LAB is an
easy-to-parse format that allows importing our workflow output into other
speech analysis tools (e.g., WaveSurfer and Praat).

Using an LSTM+A model requires optimising several parameters such as (i)
the neural network weight initialisation modality, (ii) the training algorithm to
use, (iii) the learning loss function to measure training progress, (iv) the number
of training samples after which the weights should be updated (training batch
size), (v) the number of complete passes through the training data (training
epochs), and (vi) the hidden layer length. After optimisation on the training
set (Section 3.2) these parameters were fixed for all applications. In summary,
the “infant cry detector” modules implement the following processing steps:

Algorithm 5 Infant Cry Detector

Collect all potential infant cry (pic) and probable non infant cry (pnic) time
series across the tone units
Train a Long Short Term Memory model with self-attention (LSTM+A).
Use the pic series as positive classification cases (output = 1) and the pnic
series as negative cases (output = 0)
Set a window with analysis-window length over the audio signal start
While the window falls within over the signal boundaries:

Extract the window-associated energy and pitch acoustic feature time series
Classify the time series through LSTM+A
Shift the analysis window of analysis-window shift milliseconds

Merge adjacent windows classified as containing infant cry
Use these concatenated windows’ temporal boundaries to annotate continuous
audio segments containing infant cry
Produce an annotation file in the LAB format to report the detected infant-cry
segments.
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The output of this module is the final annotation of the entire recording (in
LAB format), with the indication of the audio segments containing prominent
infant cry.

3 Results

3.1 Evaluation metrics
Nine study cases were used to test our workflow performance (Section 2.1),
distributed in nursery (3 cases), sub-intensive (4 cases), and intensive (2 cases)
neonatal care environments. The expert’s annotations of prominent infant cry
were used as the gold standard reference. The annotations covered 16 minutes
of audio recordings and identified 3.3 minutes of prominent infant-cry audio,
corresponding to 8,624,522 signal-samples over the 27,248,593 total signal-
samples. We used signal-sample-wise classification to precisely calculate the
matching between the expert’s and the automatic annotations. The signal-
samples that fell in a correctly detected infant-cry segment were considered
true positives (TP) and false positives otherwise (FP). The signal-samples
correctly classified as non infant cry were considered true negatives (TN) and
false negatives (FN) otherwise. Based on these definitions, we used the following
standard metrics for our workflow performance:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2 · Precision ·Recall

(Precision+Recall)

Accuracy measures the total portion of correctly classified signal-samples;
precision is the fraction of correctly classified infant-cry signal samples; recall
measures the model’s sensitivity to classifying infant cry; F1 is the harmonic
mean of precision and recall and indicates how balanced the workflow is between
these two measurements. Finally, we used Cohen’s kappa [83] to measure the
agreement between the expert’s annotations and the automatic classifications
with respect to chance agreement. Interpretations of kappa by Landis and Koch
[84] and Fleiss [85] were used to interpret the values.

3.2 Workflow optimisation and parameter selection
A set of 21 s of audio samples containing only prominent infant cry was used
to train the HMM for infant-cry cluster identification. The HMM number of
states was the principal unknown parameter of the model. Its optimal value
was found through a cross validation, in which 80% of the input was used to
train the model and 20% to test it, repeated 10 times. Eventually, the number
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of states resulting in the highest average likelihood was selected, which was
equal to 4 (Table 2). This session also estimated optimal values for the high-
and medium-likelihood thresholds (Section 2.5).

A 10-fold cross validation was used to find the other optimal workflow
parameters before assessing the performance on the entire data set (Section 3.3).
This validation operation tested all combinations of the following parameters’
ranges:

• Tone unit window length between 100 and 500 ms;
• Energy and pitch window lengths between 50 and 200 ms;
• Analysis window length between 10 and 300 ms and shift between 0 and 300

ms;
• Minimum clusters between 1 and 5;
• LSTM hidden layer length between 1 and 100;

The optimal parameter set is reported in Table 2. We also optimised the
other LSTM parameters, i.e., sigmoid function for uniform weight initialisation,
Adam optimiser [86] with cross-entropy loss function as the training procedure,
batch size equal to 150, and 2 training epochs. Moreover, to reduce overfitting
risk, we enabled a dropout neuron selection strategy [87] in the LSTM gates,
which statistically excluded - with a 0.2 probability - each node and its weights
from each training session.

The selected parameters are meant to be valid also for other workflow
applications, although they can be recalculated through the tools provided with
the workflow. In fact, they constitute general parameters that help the workflow
detect segments on which the LSTM+A model self-trains to adapt to new
operational conditions. The performance measurements clarify the advantages
and limitations of this choice (Section 3.3). On the one hand, this makes the
workflow ready to be re-used in new cases, also by other hospitals. On the other
hand, it requires meeting specific working conditions to improve performance.

3.3 Performance
Performance measurements revealed the advantages and optimal operational
conditions of our workflow (Table 3 and Figure 3-a-e). The optimal performance
was reached in the sub-intensive care environment (82% accuracy, 80% F1),
with a substantial agreement with the expert’s annotations. Accuracy in the
intensive and nursery care environments were averagely comparable (76.6%
and 69.3% respectively). Information retrieval performance was higher in the
nursery care (70% F1) than in the intensive care environments (50% F1). Our
workflow had an overall moderate agreement with the expert’s annotations
across all cases, with a 76.4% accuracy and 70% F1. These results, compared
to other systems [52, 62], indicate that it was reasonably good considering the
SNR ranging between 2.4 and 20.

The nursery cases had the most extensive accuracy variation (26%, between
63.6 and 89.6%) due to high conditions’ variability across the cases, e.g.,
heterogeneous infant densities, frequent adult speech, and interfering noise with
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rich spectrum. Among the nursery care study cases, the lowest accuracy (63.6%,
in Nursery-3) was measured with relatively low-noise conditions (16.9 SNR)
but in a crowded environment with multiple infants crying and adults talking
(Table 1). In sub-intensive care, accuracy had a 24.8% range, but was skewed
towards ∼80%. In this environment, people talk loudly but less frequently.
Adults have distinguishable energy and prosody profiles, the infant presence
density is low, and the environmental noise falls within frequency bands (<1
kHz and >10 kHz) outside of the ranges of infant cry (1-10.5 kHz). This was
the main reason for classification accuracy improvement of our workflow in
this environment. The agreement with the expert’s annotations was overall
substantial, apart from study case Sub-intensive-4 that contained far more
adult speech than infant cry. In this case, infant cry was a rare event; thus,
the LSTM+A classification performance decreased. In the intensive care study
cases, there was a large accuracy discrepancy between the study cases (56.8% vs
82.0%), although the noise levels were comparable (4.4 vs 5.05 SNR). However,
the F1 measures (65.5% and 32.2%), and the fair/slight agreements with the
expert, indicate that the performance was overall low in this environment. The
performance was indeed influenced by a large amount of noise concentrated in
the same frequency range of infant cry, which was sometimes indistinguishable
from infant cry within a 100-200 ms audio segment (even for a human ear).

Due to heterogeneous noise sources, SNR had a broader range across the
sub-intensive and nursery cases. In the intensive care cases, it was principally
related to one source (i.e., monitoring machines) (Figure 3-f). However, the
distribution of the performance measurements across the SNR values showed
no evident correlation with noise level (Figure 4). This property is a significant
consequence of using energy and pitch features for classification, which are
particularly robust to noise level but may depend on noise type.

4 Discussion and Conclusions
We have presented a workflow to detect infant-cry audio, which is suited for
populating a database for neonatal diagnoses and analyses. The advantage of
our workflow is that it requires minimal training and uses a self-training strategy
to improve classification performance and adapt to the specific environmental
noise and infants present in the recording. This adaptive approach is innovative,
considering that infant-cry databases are hardly accessible and infant-cry
spectral characteristics depend on the mother’s native language. The presented
approach is cost-effective from the point of view of recording session organisation
and realisation, since it works even with cellular phone recordings. Therefore,
its realisation would be affordable for many hospitals. Our present solution has
a large applicability range at the expense of a lower precision and accuracy
in some operational conditions. It reached good-level performance in a sub-
intensive care environment where it could be already operational. An 82%
accuracy can be considered sufficient given the high level of noise (∼11.5 SNR)
and the minimal training set used (21 s). In fact, the frequently cited supervised
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system for infant-cry detection by Cohen and Lavner [52] gains between 70
and 80% detection accuracy with our SNR levels. With respect to this system,
our workflow (i) uses syllabic-scale acoustic features - instead of phonetic-scale
features (∼10 ms) - that are more robust to noise, (ii) is nearly unsupervised
and thus does not require large annotated corpora for model training, (iii) can
be easily re-used in new operational environments than those of the training
set (thanks to the self-training strategy), (iv) is completely open-source, which
is uncommon for this type of systems.

The higher performance in the sub-intensive care environment likely depends
on the particular noise type, a low density of infants in the room, and a less
frequent mutually-induced cry. In this environment, machine noise was concen-
trated in high- and low-frequency ranges outside of the infant-cry frequency
range (1 kHz-10.5 kHz). In nursery care, the more significant infant density
created interfering and degraded signals with complex and rich spectra, also
overlapping with frequent adult speech. Therefore, it was difficult to detect
prominent infant cry. In intensive care, the lower performance was mainly
due to machine noise concentrated in the 1-10.5 kHz frequency band, which
sometimes was indistinguishable from infant cry. Overall, these results indi-
cate that our workflow was more influenced by noise type than by noise level.
In summary, a real-world application scenario would require preventing the
microphone from capturing machine beeping sounds and human speech, while
positioning the microphone close to the infant. A directional microphone or
an incubator-mounted microphone in a sub-intensive care environment would
therefore represent the optimal condition for our workflow.

The near-unsupervised nature of our workflow makes it directly usable with
new data or by other hospitals with their data. Open and direct re-usability
was one of our main goals. Re-using our workflow on new data would not
necessarily require re-training the models because our infant-cry detector rather
depends on the self-trained LSTM+A model when processing new data and
environments. Attention should be therefore paid to guarantee optimal working
conditions through appropriate recording equipment and environment.

One planned enhancement to generalise our workflow is to reduce false
positives by more precisely separating articulated machine noise from infant
cry and discarding tone units that do not contain infant cry. This phase will
require enhancing the “infant cry cluster identification” module by (i) extending
the training set, (ii) using additional acoustic features, (iii) using feature
transformation to improve input data quality and informativeness [39], and (iv)
using more powerful classifiers. For example, the HMM could be substituted
with Conditional Random Fields [88] to improve classification performance by
modelling long-term temporal relations in the training data [89]. Moreover,
adding more syllabic-scale or perceptually motivated spectral information (e.g.,
the Modulation Spectrogram [56]) could enhance the separation between infant
cry, machine noise, and adult speech [90]. One alternative to infant cry cluster
identification could be to use a pre-trained automatic speech recogniser based on
syllabic-scale features [58] to build a preliminary filtering stage identifying the
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signal segments potentially containing infant cry. A transfer-learning strategy
could be used to re-adapt such ASR to this scope.

As a near-future application of our workflow, we will create an infant-
cry database for the sub-intensive care environment of the “Dipartimento
Materno Infantile” of the Azienda Ospedaliero-Universitaria Pisana to help
neonatologists study pathological and normal cry and possibly conduct early
diagnoses. We will use infant-specific equipment (a directional microphone
or an incubator-mounted microphone) to optimise the workflow operational
conditions by removing confounding noise. This installation will also require
interfacing with ethical and privacy commissions to guarantee non-invasive and
privacy-safe solutions. Such a system will be a permanent monitoring system
generating infant-specific data flows for the entire neonatal care environment.

Supplementary information. The workflow code and related modules and
models are entirely Java-based and available as an open source software on the
GitHub at https://github.com/cybprojects65/DeepCry. The repository also
includes the acoustic features of the extracted tone units.
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Tables

Table 1: Descriptions of the study cases and their recording conditions, dura-
tion, stress levels and noise levels, the most frequently recorded cry types, and
the number of different infants and operators involved in the recordings.
Study case Description Conditions Stress level Most frequent cry type SNR Duration (s) N. of infants N. of operators

NURSERY 1 Infants during examination People talking loudly, low noise level HIGH Examination 9.44 36 2 2
NURSERY 2 Infants in cradle before exami-

nation
People talking loudly, low noise level HIGH Physical needs 13.66 21 3 2

NURSERY 3 Infants crying in crowded envi-
ronment

Crowded, several people talking, multiple
infant crying

HIGH Spontaneous 16.86 451 4 3

SUB-INTENSIVE 1 Stable infants crying People talking loudly, low noise level MEDIUM Spontaneous 20.01 152 2 2
SUB-INTENSIVE 2 Hungry infants crying Periodic machine noise, alarms MEDIUM Hunger 16.71 50 2 0
SUB-INTENSIVE 3 Pre-term infant after examina-

tion and other infants crying
People talking loudly, high noise level HIGH Examination 3.13 21 2 1

SUB-INTENSIVE 4 Hungry infants crying People talking loudly, high noise level HIGH Hunger 6.04 53 1 4
INTENSIVE 1 Pre-term infant crying during

care manoeuvres
People talking loudly, high noise level, peri-
odic machine noise

HIGH Examination 4.40 36 2 3

INTENSIVE 2 Pre-term infant crying inside an
incubator

People talking quietly, high noise level, con-
stant machine noise

MEDIUM Spontaneous 5.05 160 2 2
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Table 2: Optimal parameter values of our workflow.

Parameter Value

Tone unit window length (ms) 500
Energy and pitch window lengths (ms) 100
Analysis window length (ms) 300
Analysis window shift (ms) 100
Minimum clusters 5
Hidden Markov Model state length 4
LSTM hidden layer length 3
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Table 3: Performance measurements per environment and study case, with
the highest-accuracy cases highlighted in bold. The total case with the
highest-performance is highlighted in red. Cohen’s kappa is reported with its
interpretations according to Landis and Koch and Fleiss.
Environment SNR Accuracy Precision Recall F1 Kappa Kappa

(Landis/Koch)
Kappa
(Fleiss)

NURSERY 1 9.44 89.6% 95.2% 84.3% 89.4% 0.79 Substantial Excellent
NURSERY 2 13.7 85.9% 49.1% 65.7% 56.1% 0.48 Moderate Good
NURSERY 3 16.9 63.6% 49.0% 91.6% 63.8% 0.33 Fair Marginal
SUB-INTENSIVE 1 20 87.5% 73.0% 84.5% 78.3% 0.70 Substantial Good
SUB-INTENSIVE 2 16.7 79.6% 69.9% 97.7% 81.5% 0.60 Substantial Good
SUB-INTENSIVE 3 3.13 87.0% 84.5% 91.7% 88.0% 0.74 Substantial Good
SUB-INTENSIVE 4 6.04 62.7% 63.3% 93.4% 75.5% 0.08 Slight Marginal
INTENSIVE 1 4.4 56.8% 54.2% 82.2% 65.3% 0.14 Slight Marginal
INTENSIVE 2 5.05 82.0% 19.4% 95.0% 32.2% 0.27 Fair Marginal

TOTAL 10.6 76.4% 58.3% 89.5% 70.6% 0.48 Moderate Good
TOTAL-NURSERY 13.3 69.3% 54.3% 89.2% 67.5% 0.42 Moderate Good
TOTAL-SUB-
INTENSIVE

11.5 82.0% 70.4% 90.6% 79.2% 0.64 Substantial Good

TOTAL-
INTENSIVE

4.73 76.6% 36.2% 85.4% 50.8% 0.39 Fair Marginal
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Figures

Fig. 1: Schema of the proposed infant cry detection workflow. The lowest
frame shows the LSTM+A classification model.
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Fig. 2: Distributions of the most frequent infant cry types (upper chart) and
environmental stress levels (lower chart) across the analysed neonatal care
environments.
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Fig. 3: Box plots showing performance measurements across the study-case
environments: (a) accuracy on infant cry detection; (b) F1 measure, (c) precision,
and (d) recall of the infant cry detector; (e) Cohen’s kappa agreement with the
expert’s annotations; (f) signal-to-noise ratio (SNR)
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Fig. 4: A chart showing the relation between signal-to-noise ratio (SNR) (on
the X axis) and different performance measurements (on the Y axis). The chart
demonstrates that our model’s performance does not depend on the noise level
directly.
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